A class of quadratic APN binomials inequivalent to power functions

نویسندگان

  • Lilya Budaghyan
  • Claude Carlet
  • Gregor Leander
چکیده

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from F2n to F2n (n ≥ 12, n divisible by 3 but not by 9). We prove that these functions are EA-inequivalent to any power function and that they are CCZ-inequivalent to any Gold function and to any Kasami function. It means that for n even they are CCZ-inequivalent to any known APN function, and in particular for n = 12, 24, they are therefore CCZ-inequivalent to any power function. It is also proven that, except in particular cases, the Gold mappings are CCZinequivalent to the Kasami and Welch functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another class of quadratic APN binomials over F2n: the case n divisible by 4

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from F2n to F2n with n = 4k and k odd. We prove that these functions are CCZinequivalent to known APN power functions when k 6= 1. In particular it means that for n = 12, 20, 28, they are CCZ-inequivalent to any power function.

متن کامل

Two Classes of Crooked Multinomials Inequivalent to Power Functions

It is known that crooked functions can be used to construct many interesting combinatorial objects, and a quadratic function is crooked if and only if it is almost perfect nonlinear (APN). In this paper, we introduce two infinite classes of quadratic crooked multinomials on fields of order 2. One class of APN functions constructed in [7] is a particular case of the one we construct in Theorem 1...

متن کامل

The Simplest Method for Constructing APN Polynomials EA-Inequivalent to Power Functions

The first APN polynomials EA-inequivalent to power functions have been constructed in [7, 8] by applying CCZ-equivalence to the Gold APN functions. It is a natural question whether it is possible to construct APN polynomials EA-inequivalent to power functions by using only EA-equivalence and inverse transformation on a power APN function: this would be the simplest method to construct APN polyn...

متن کامل

A matrix approach for constructing quadratic APN functions

We find a one to one correspondence between quadratic APN functions without linear and constant terms and a special kind of matrices (We call such matrices as QAMs). Based on the nice mathematical structures of the QAMs, we have developed efficient algorithms to construct quadratic APN functions. On F27 , we have found more than 470 classes of new CCZ-inequivalent quadratic APN functions, which...

متن کامل

Constructing new APN functions from known ones

We present a method for constructing new quadratic APN functions from known ones. Applying this method to the Gold power functions we construct an APN function x3 + tr(x9) over F2n . It is proven that in general this function is CCZinequivalent to the Gold functions (and therefore EA-inequivalent to power functions), to the inverse and Dobbertin mappings, and in the case n = 7 it is CCZinequiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006